

Biochemical Pharmacology 63 (2002) 2069–2074

Biochemical Pharmacology

Lipid peroxidation induced by indomethacin with horseradish peroxidase and hydrogen peroxide: involvement of indomethacin radicals

Toshiaki Miura*, Sanae Muraoka, Yukio Fujimoto

Department of Biochemistry, Hokkaido College of Pharmacy, Katuraoka-cho 7-1, Otaru 047-0264, Japan Received 4 January 2001; accepted 26 November 2001

Abstract

Some of the side-effects of using indomethacin (IM) involve damage to the gastric mucosa and liver mitochondria. On the other hand, neutrophils infiltrate inflammatory sites to damage the tissues through the generation of reactive oxygen species by myeloperoxidase. The stomach and intestine have large amounts of peroxidase. These findings suggest that peroxidases are involved in tissue damage induced by IM. To clarify the basis for the tissue damage induced by IM in the presence of horseradish peroxidase (HRP) and H_2O_2 (HRP- H_2O_2), lipid peroxidation was investigated. When IM was incubated with liver microsomes in the presence of HRP- H_2O_2 and ADP- Fe^{3+} , lipid peroxidation was time-dependent. Catalase and desferrioxamine almost completely inhibited lipid peroxidation, indicating that H_2O_2 and iron are necessary for lipid peroxidation. Of interest, superoxide dismutase strongly inhibited lipid peroxidation, and it also inhibited the formation of bathophenanthroline- Fe^{2+} , indicating that reduction of the ferric ion was due to superoxide (O_2^-). ESR signals of IM radicals were detected during the interaction of IM with HRP- H_2O_2 . However, the IM radical by itself did not reduce the ferric ion. These results suggest that O_2^- may be generated during the interaction of IM radicals with H_2O_2 . Ferryl species, which are formed during the reduction of iron by O_2^- , probably are involved in lipid peroxidation. © 2002 Elsevier Science Inc. All rights reserved.

Keywords: Horseradish peroxidase; Indomethacin; Nonsteroidal anti-inflammatory drug; Lipid peroxidation

1. Introduction

IM, one of the most effective NSAIDs, is widely used clinically to treat rheumatic and arthritic disease because it has analgesic, antipyretic, and anti-inflammatory actions; these actions are mediated by inhibiting prostaglandin synthesis by preventing the cyclooxygenase activity of prostaglandin H synthase [1,2]. However, side-effects of the administration of IM are damage to the gastric mucosa [3,4] and liver mitochondria [5,6]. Oxygen radicals and lipid peroxidation may be involved in the gastric mucosal damage induced by IM [7–9]. However, the exact role of IM in lipid peroxidation remains to be clarified.

Through its cyclooxygenase activity, prostaglandin H synthase catalyzes the bis-dioxygenation of arachidonic

acid to form hydroperoxy endoperoxide prostaglandin G₂, while via its hydroperoxidase activity it catalyzes the reduction of the hydroperoxide groups of the endoperoxide. During this enzyme-catalyzed reduction of the endoperoxide, many xenobiotics are oxidized, via the hydroperoxidase activity, through a one-electron transfer [10–12]. Similarly, other peroxidases, such as lactoperoxidase, myeloperoxidase, and HRP, can also oxidize various drugs [13– 17]. Neutrophils infiltrate inflammatory sites to damage the tissues through the generation of reactive oxygen species by myeloperoxidase, and they have an important role in the pathogenesis of gastric ulcers induced by NSAIDs [18]. The stomach and intestine also have large amounts of peroxidase [19]. These findings suggest that when IM acts on tissues, it may be metabolized to a free radical. The IM free radical is produced during the interaction of IM with lactoperoxidase in the presence of H₂O₂ [20]. However, whether the IM radical contributes to the tissue damage induced by IM is not clear.

In this study, we show that lipid peroxidation of microsomes is induced through the formation of IM free radicals generated during the interaction of IM with HRP and H_2O_2 (HRP- H_2O_2).

^{*}Corresponding author. Tel.: +81-134-62-5111; fax: +81-134-62-5161. *E-mail address:* miurat@hokuyakudai.ac.jp (T. Miura).

Abbreviations: BHT, butylated hydroxytoluene; BPS, bathophenanthroline sulfonate; HO•, hydroxyl radical; HRP, horseradish peroxidase; IM, indomethacin; MNP, 2-methyl-2-nitrosopropane; NSAID, nonsteroidal anti-inflammatory drug; O2⁻, superoxide; SOD, superoxide dismutase; TBA, thiobarbituric acid; TBARS, thiobarbituric acid-reactive substances.

2. Materials and methods

2.1. Chemicals

IM and HRP were obtained from Wako Pure Chemical Industry; MNP and TBA were from the Merck Japan Co. Ltd.; and SOD (bovine erythrocyte) and catalase (bovine liver) were from the Sigma Chemical Co. Other chemicals were analytical grade products obtained from commercial suppliers.

2.2. Lipid peroxidation

Microsomes were prepared from the livers of Wistar strain rats weighing 200–250 g as follows [21]: livers were minced and then homogenized in a buffer consisting of 0.25 M sucrose, 1.0 mM EDTA, and 10 mM HEPES at pH 7.4. The homogenate was filtered through double-layer gauze and then was centrifuged at 1,600 g for 10 min at 4° . The supernatant was centrifuged at 9,000 g for 20 min at 4°, and the mitochondrial pellets were discarded. Microsomal pellets were obtained by ultra-centrifugation at 105,000 g for 1 hr at 4°. To remove the sucrose, which interferes with TBARS formation, the microsomal pellets were washed three times with HEPES buffer at pH 7.4, and they were stored at -80° . Protein was measured using the bicinchoninic acid assay with bovine serum albumin as a standard [22]. The reaction mixture contained microsomes $(0.1 \text{ mg protein/mL}), 0.12 \,\mu\text{M} HRP, 100 \,\mu\text{M} H_2O_2,$ $10.0 \,\mu\text{M} \,\text{ADP-Fe}^{3+} \,(0.17 \,\text{mM} \,\text{ADP}, \,10 \,\mu\text{M} \,\text{FeCl}_3), \,\text{and}$ 0.15 M NaCl in 3.0 mL of 10 mM HEPES buffer at pH 7.4. Various concentrations of IM were added to the reaction mixture. The formation of TBARS was determined as reported by Buege and Aust [23] with minor modification. The peroxidation reaction was stopped by adding 0.1 mL of 30% trichloroacetic acid. The precipitate from the reaction mixture was discarded after centrifugation at 1,500 g for 10 min at room temperature. TBARS formation was assayed by measuring the absorption at 535 nm after heating for 30 min at 100°, and the absorbance was expressed as nmol TBARS/mg protein, using $\varepsilon = 1.56 \times$ $10^{5} \,\mathrm{M}^{-1} \,\mathrm{cm}^{-1}$ [24].

2.3. Reduction of Fe^{3+}

The reduction of Fe³⁺ induced by IM was monitored spectrophotometrically at 530 nm as BPS-Fe²⁺ formation ($\varepsilon = 22.14 \text{ mM}^{-1} \text{ cm}^{-1}$) [25].

2.4. ESR measurement

ESR signals of IM radicals were measured using the JEOL model JES-RE1X with MNP as a spin trapper. The ESR setting was microwave power, 10 mW; modulation frequency, 100 kHz; modulation field, 0.5 G; receiver gain, 1000; and time constant, 0.3 sec. The

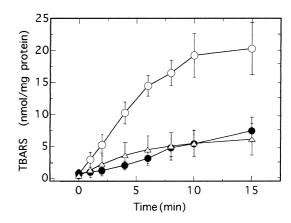


Fig. 1. Lipid peroxidation induced by IM with HRP-H $_2O_2$ in the presence of ADP-Fe $^{3+}$. The complete reaction mixture contained: microsomes (0.1 mg protein/mL), -IM (10 μ M), H $_2O_2$ (100 μ M), HRP (0.12 μ M), -ADP-Fe $^{3+}$ (10 μ M), and 0.15 M NaCl in 10 mM HEPES buffer at pH 7.4. After the mixture was incubated at 37°, TBARS formation was measured as described in Section 2. Each point represents the mean \pm SD of five experiments. Key: (\bigcirc) complete reaction mixture; (\blacksquare) IM, and (\triangle) ADP-Fe $^{3+}$.

relative signal intensity was measured using Mn²⁺ as a standard.

3. Results

3.1. Lipid peroxidation induced by IM

Fig. 1 shows that when microsomes were incubated with IM and HRP- H_2O_2 in the presence of ADP- Fe^{3+} , lipid peroxidation, which was measured in terms of the formation of TBARS, was induced with time. Only low lipid peroxidation was observed in the reaction lacking IM or ADP- Fe^{3+} . Fig. 2 shows that the lipid peroxidation was dependent upon the IM concentration. At 20 μ M IM, TBARS formation reached about 20 nmol/mg protein. These results suggest that IM induced the lipid

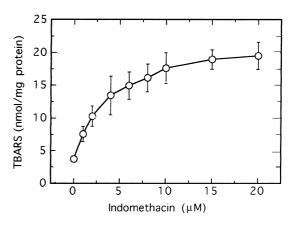


Fig. 2. Effect of IM concentration on lipid peroxidation. After the mixture was incubated for 10 min, TBARS formation was measured. Other conditions were the same as described in the legend of Fig. 1. Each point represents the mean \pm SD of five experiments.

Table 1 Effects of radical scavengers and desferrioxamine on lipid peroxidation

Additions	Concentration (µM)	TBARS (nmol/mg protein)	Inhibition (%)
None	_	18.6 ± 0.9	_
Catalase	0.4	0.9 ± 0.2	95.2
SOD	0.3	12.1 ± 2.8	34.9
Dimethyl sulfoxide	1×10^{4}	$17.2 \pm 0.9^*$	7.5
Mannitol	1×10^{4}	$17.7 \pm 0.8^*$	5.1
BHT	10	1.3 ± 0.4	92.9
Desferrioxamine	100	3.0 ± 0.3	84.1
GSH	1×10^3	9.6 ± 0.2	48.2

Conditions were the same as described in the legend of Fig. 1 except for adding radical scavengers and desferrioxamine. IM (10 μ M) was added to the reaction mixture. After the mixture was incubated for 10 min, TBARS formation was measured. Each value represents the mean \pm SD of five experiments. Data were analyzed using the *t*-test.

peroxidation of microsomes through interaction with HRP- H_2O_2 in the presence of ADP-Fe³⁺.

3.2. Effect of radical scavengers and iron chelators

The ability of radical scavengers and desferrioxamine to inhibit lipid peroxidation induced by IM with HRP-H₂O₂ was tested, and the results are summarized in Table 1. Catalase completely inhibited lipid peroxidation, indicating that H₂O₂ was necessary for lipid peroxidation induced by IM with HRP. Gastric mucosal damage and membrane lipid peroxidation induced by IM has been shown to be partially inhibited by SOD [26]. In this study, SOD inhibited lipid peroxidation, indicating that lipid peroxidation was induced O₂⁻-dependently by IM with HRP-H₂O₂. BHT, a typical antioxidant, and the iron chelator desferrioxamine sharply inhibited lipid peroxidation. These results suggest that iron is necessary for lipid peroxidation. However, lipid peroxidation was independent of the hydroxyl radical (HO[•]), because mannitol and dimethyl sulfoxide, typical HO scavengers, had no effect. GSH

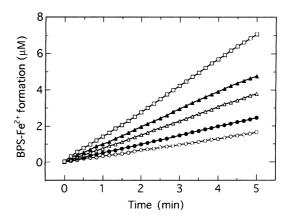


Fig. 3. Ferrous ion formation caused by IM with HRP- H_2O_2 . The reaction mixture contained BPS (1.0 mM), ADP- Fe^{3+} (10.0 μ M), various concentrations of IM, H_2O_2 (100 μ M), HRP (0.12 μ M), and 0.15 M NaCl in 10 mM HEPES buffer at pH 7.4. Ferrous ion formation was monitored by measurement of absorption at 530 nm. Each point represents the mean of three experiments. The variation was less than 10%. Key: (\bigcirc) no IM; (\bigcirc) 1.0 μ M IM; (\triangle) 3.0 μ M IM; (\triangle) 5.0 μ M IM, and (\square) 10.0 μ M IM.

strongly inhibited lipid peroxidation activity. It has been reported that GSH can react with HRP compounds I and II [13]. Presumably, the reaction of IM with HRP compound I or II is depressed by GSH.

3.3. Involvement of iron

Generally, lipid peroxidation proceeds through the reduction of iron [27]. We therefore examined the mechanism by which iron is reduced. Fig. 3 shows that BPS-Fe²⁺ formation was dependent upon the IM concentration. At 10 μ M, IM formed 1.5 μ M Fe²⁺/min in the presence of HRP-H₂O₂. Only a low amount of BPS-Fe²⁺ was formed in the reaction lacking IM. Evidently, ferric ion was reduced to ferrous ion during the interaction of IM with HRP-H₂O₂. Both SOD and catalase strongly inhibited the formation of BPS-Fe²⁺ (Fig. 4a), indicating that reduction of the ferric ion depended predominantly upon O₂⁻ and

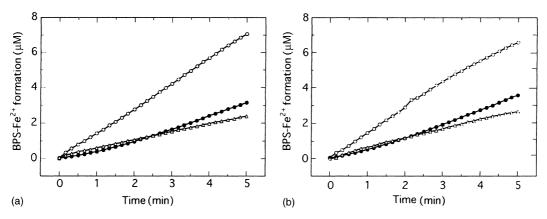


Fig. 4. Inhibitory effect of SOD and catalase on ferrous ion formation under aerobic (a) or anaerobic (b) conditions. The conditions were the same as described in the legend of Fig. 3 except for the presence of $10 \,\mu\text{M}$ IM. SOD and catalase were added to the reaction mixture. For anaerobic experiments, the reaction mixture was purged with argon for $15 \,\text{min}$ before the reactions were carried out. Key: (\bigcirc) no addition; (\blacksquare) SOD ($0.3 \,\mu\text{M}$); and (\triangle) catalase ($0.4 \,\mu\text{M}$). Each point represents the mean of three experiments. The variation was less than 10%.

^{*} P > 0.05, versus no addition.

H₂O₂. Even under anaerobic conditions, BPS-Fe²⁺ was formed by the interaction of IM with HRP-H₂O₂, while, interestingly, SOD and catalase efficiently inhibited its formation (Fig. 4b).

Peroxidase oxidizes various organic compounds by a one-electron transfer [13–16], suggesting that IM radicals are formed by IM with HRP- H_2O_2 and are involved in lipid peroxidation. Fig. 5 shows that ESR signals of IM radicals ($a_N = 15.6$) were detected from an aerobic reaction mixture consisting of IM, HRP- H_2O_2 , MNP, and 5% ethanol, which was used to dissolve IM and MNP. No ESR signals of IM radicals were observed in the reaction mixture lacking IM (Fig. 5b), H_2O_2 (Fig. 5c), or HRP (Fig. 5d), indicating that radicals of IM were formed through the interaction of IM with HRP- H_2O_2 . Adding 0.1 mM ferric ion did not affect the ESR signals of IM radicals (Fig. 5e),

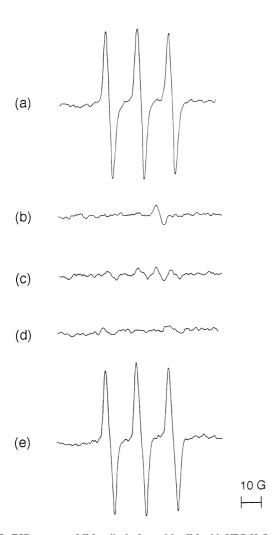


Fig. 5. ESR spectra of IM radicals formed by IM with HRP-H₂O₂. The reaction mixture contained IM (5.0 mM), HRP (2.5 μ M), H₂O₂ (100 μ M), MNP (2.9 mM), and 5% ethanol in 100 mM HEPES buffer at pH 7.4. The reaction was started by adding IM. The signals were recorded under anaerobic conditions. For anaerobic experiments, the reaction mixture was purged with argon for 15 min before the reactions were carried out. Other conditions were as described in Section 2. Key: (a) IM added; (b) without IM; (c) without H₂O₂; (d) without HRP, and (e) IM with ADP-Fe³⁺ (0.1 mM).

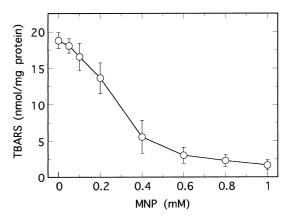


Fig. 6. Inhibition of lipid peroxidation by MNP. The conditions were the same as described in the legend of Fig. 1 except for MNP. After the mixture was incubated for 10 min, TBARS formation was measured. Each point represents the mean \pm SD of five experiments.

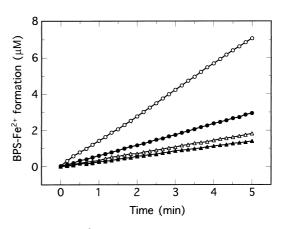


Fig. 7. Inhibition of Fe²⁺ formation by MNP. The conditions were the same as described in the legend of Fig. 3 except for MNP. Each point represents the mean of three experiments. The variation was less than 10%. Key: (\bigcirc) no MNP; (\blacksquare) 1.0 mM MNP; (\triangle) 3.0 mM MNP; and (\blacksquare) 5.0 mM MNP.

indicating that the IM radical by itself did not reduce the ferric ion. However, MNP, a spin-trapping agent, strongly inhibited both lipid peroxidation (Fig. 6) and the formation of BPS-Fe²⁺ in a concentration-dependent manner (Fig. 7). These results suggest that IM radicals are involved in lipid peroxidation through the reduction of the ferric ion.

4. Discussion

In gastric mucosal injury induced by IM, lipid peroxidation mediated by oxygen radicals destroys and damages the cell membranes, leading to mucosal injury [7–9,26]. However, the mechanism of lipid peroxidation induced by IM is not clear. In this study, we demonstrated that IM radicals, produced from the interaction of IM with HRP-H₂O₂, were involved in lipid peroxidation. In the absence of ADP-Fe³⁺, lipid peroxidation was not induced by IM with HRP-H₂O₂, indicating that the IM radical by itself did

not cause lipid peroxidation. Evidently, IM is involved in lipid peroxidation through the reduction of iron. Furthermore, catalase and desferrioxamine strongly inhibited lipid peroxidation, indicating that iron and H₂O₂ are necessary for lipid peroxidation. SOD also strongly inhibited both lipid peroxidation and the formation of BPS-Fe²⁺. Superoxide by itself does not initiate lipid peroxidation. Therefore, lipid peroxidation should be caused through the reduction of the ferric ion by O₂⁻. However, IM radicals seem unlikely to participate in the reduction of the ferric ion because adding ferric ion did not diminish the ESR signals. MNP, a spin-trap agent, strongly inhibited both lipid peroxidation and the formation of BPS-Fe²⁺, indicating that IM radicals are involved in lipid peroxidation through the reduction of the ferric ion by O_2^- . SOD and catalase inhibited BPS-Fe²⁺ formation not only under aerobic conditions, but also under anaerobic conditions. From these results, we speculated that O_2^- should be formed by the interaction of the IM radical (IM[•]) with H₂O₂ as follows:

$$IM^{\bullet} + H_2O_2 \rightarrow IM + O_2^- + 2H^+$$
 (1)

Participation of HO• in iron-catalyzed lipid peroxidation is assessed by using SOD, catalase, or HO[•] scavengers. In this study, SOD and catalase, but not HO[•] scavengers, strongly inhibited the lipid peroxidation induced by IM with HRP-H₂O₂, suggesting that HO[•] is not involved in the lipid peroxidation induced by IM with HRP-H₂O₂. HO• formation can be detected by its ability to degrade deoxyribose to fragments that generate pink chromogen upon heating with TBA at a low pH [28]. However, no marked deoxyribose degradation was induced during the interaction of IM with HRP-H₂O₂ in the presence of ADP-Fe³⁺ (data not shown). These results indicate that HO• was not formed during the interaction of IM with HRP-H₂O₂ in the presence of ADP-Fe³⁺. Intermediates formed in the Fenton reaction consist of HO[•] and iron species [29]. The efficiency of HO[•] generation varied with the nature of the iron chelators used. The oxidizing species of iron, ferryl, FeO₂⁺, or Fe(IV)=O, are generated effectively in the presence of ADP. Hypervalent iron, such as ferryl or perferryl ion $Fe(V)=O_3^+$, are formed by the reaction of the ferrous ion with H₂O₂.

$$Fe^{2+} + H_2O_2 \rightarrow FeO_2^+ + H_2O$$
 (2)

The ferryl or perferryl ion can extract a hydrogen atom from polyunsaturated fatty acids of membranes to initiate lipid peroxidation [30–32].

Many studies have shown that gastric mucosal damage, including ulcers and lipid peroxidation induced by IM, is inhibited by SOD [7,8,26]. From the present study, we believe that SOD blocks gastric mucosal damage by preventing the reduction of iron by O_2^- .

Prostaglandin H synthase has both cyclooxygenase and hydroperoxidase activities, and the gastric toxicity of IM is believed to be due to its ability to inhibit cyclooxygenase. However, data in this study suggest that it is the peroxidase, and not the cyclooxygenase, activity of prostaglandin H synthase that is involved in gastric toxicity. Harvison *et al.* [33] showed that the oxidation of acetaminophen by prostaglandin H synthase in the presence of H_2O_2 (but not arachidonic acid) is not inhibited by IM, indicating that the peroxidase activity of prostaglandin H synthase is not inhibited by IM. These findings suggest that IM acts as a stimulator of lipid peroxidation in the presence of H_2O_2 .

Xanthine oxidase induces lipid peroxidation depending on the substrate. SOD effectively inhibits lipid peroxidation [34,35]. The digestive tract provides a large amount of xanthine oxidase. However, IM did not affect the lipid peroxidation induced by xanthine oxidase with hypoxanthine and ADP-Fe³⁺ (data not shown). Xanthine oxidase probably does not contribute to lipid peroxidation induced by IM in the digestive tract. Gastric peroxidase, but not xanthine oxidase, may have an important role in gastric mucosal damage induced by IM.

References

- [1] Vane JR. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat New Biol 1971;231:232–5.
- [2] Kulmacz RJ, Lands WE. Stoichiometry and kinetics of the interaction of prostaglandin H synthase with anti-inflammatory agents. J Biol Chem 1985;260:12572–8.
- [3] Garcia Rodriguez LA, Jick H. Risk of upper gastrointestinal bleeding and perforation associated with individual nonsteroidal anti-inflammatory drugs. Lancet 1994;343:769–72.
- [4] Hawkey CJ. Nonsteroidal anti-inflammatory drug gastropathy: causes and treatment. Scand J Gastroenterol Suppl 1996;220:124–7.
- [5] Masubuchi Y, Saito H, Horie T. Structural requirements for the hepatotoxicity of nonsteroidal anti-inflammatory drugs in isolated rat hepatocytes. J Pharmacol Exp Ther 1998;287:208–13.
- [6] Masubuchi Y, Yamada S, Horie T. Possible mechanism of hepatocyte injury induced by diphenylamine and its structurally related nonsteroidal anti-inflammatory drugs. J Pharmacol Exp Ther 2000;292: 982–7.
- [7] Naito Y, Yoshikawa T, Matsuyama K, Nishimura S, Yagi N, Kondo M. Effects of free radical scavengers on indomethacin-induced aggravation of gastric ulcer in rats. Dig Dis Sci 1995;40:2019–21.
- [8] Naito Y, Yoshikawa T, Yoshida N, Kondo M. Role of oxygen radical and lipid peroxidation in indomethacin-induced gastric mucosal injury. Dig Dis Sci 1998;43:30–4.
- [9] Tanaka J, Yuda Y. Lipid peroxidation in gastric mucosal lesions induced by indomethacin in rat. Biol Pharm Bull 1996;19:716– 20.
- [10] Marnett LJ, Bienkowski MJ, Pagels WR, Reed GA. Mechanism of xenobiotic cooxygenation coupled to prostaglandin H₂ biosynthesis. Adv Prostaglandin Thromboxane Res 1980;6:149–51.
- [11] Marnett LJ, Chen YN, Maddipati KR, Ple P, Labeque R. Functional differentiation of cyclooxygenase and peroxidase activities of prostaglandin synthase by trypsin treatment, possible location of a prosthetic heme binding site. J Biol Chem 1988;263:16532–5.
- [12] Markey CM, Alward A, Weller PE, Marnett LJ. Quantitative studies of hydroperoxide reduction by prostaglandin H synthase. Reducing substrate specificity and the relationship of peroxidase to cyclooxygenase activities. J Biol Chem 1987;262:6266–79.

- [13] Mottley C, Toy K, Mason RP. Oxidation of thiol drugs and biochemicals by the lactoperoxidase/hydrogen peroxide system. Mol Pharmacol 1987;31:417–21.
- [14] Metodiewa D, Reszka K, Dunford HB. Oxidation of the substituted catechols dihydroxyphenylalanine methyl ester and trihydroxyphenylalanine by lactoperoxidase and its compounds. Arch Biochem Biophys 1989;274:601–8.
- [15] Metodiewa D, Dunford HB. Evidence for one-electron oxidation of benzylpenicillin G by lactoperoxidase compounds I and II. Biochem Biophys Res Commun 1990;169:1211–6.
- [16] Duescher RJ, Elfarra AA. 1,3-Butadiene oxidation by human myeloperoxidase. Role of chloride ion in catalysis of divergent pathways. J Biol Chem 1992;267:19859–65.
- [17] Parij N, Nève J. Nonsteroidal anti-inflammatory drugs interact with horseradish peroxidase in an *in vitro* assay system for hydrogen peroxide scavenging. Eur J Pharmacol 1996;311:259–64.
- [18] Wallace JL, Keenan CM, Granger DN. Gastric ulceration induced by nonsteroidal anti-inflammatory drugs is a neutrophil-dependent process. Am J Physiol 1990;259:462–7.
- [19] Das D, Bandyopadhyay D, Banerjee RK. Oxidative inactivation of gastric peroxidase by site-specific generation of hydroxyl radical and its role in stress-induced gastric ulceration. Free Radic Biol Med 1998;24:460–9.
- [20] Chatterjee R, Bandyopadhyay U, Mazumdar A, Banerjee RK. Lactoperoxidase-catalysed oxidation of indomethacin, a nonsteroidal antiinflammatory drug, through the formation of a free radical. Biochem Pharmacol 1996;52:1169–75.
- [21] Miura T, Muraoka S, Ogiso T. Inhibition of lipid peroxidation by estradiol and 2-hydroxyestradiol. Steroids 1996;61:379–83.
- [22] Redinbaugh MG, Turley RB. Adaptation of the bicinchoninic acid protein assay for use with microtiter plates and sucrose gradient fraction. Anal Biochem 1986;153:267–71.
- [23] Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol 1978;52:302–10.
- [24] Gonzalez Flecha BS, Repetto M, Evelson P, Boverris A. Inhibition of

- microsomal lipid peroxidation by α -tocopherol and α -tocopherol acetate. Xenobiotica 1991;21:1013–22.
- [25] Carter P. Spectrophotometric determination of serum iron at the submicrogram level with a new reagent (ferrozine). Anal Biochem 1971;40:450–8.
- [26] Yoshikawa T, Naito Y, Kishi A, Tomii T, Kaneko T, Iinuma S, Ichikawa H, Yasuda M, Takahashi S, Kondo M. Role of active oxygen, lipid peroxidation, and antioxidants in the pathogenesis of gastric mucosal injury induced by indomethacin in rats. Gut 1993;34:732–7.
- [27] Minotti G, Aust SD. The role of iron in oxygen radical mediated lipid peroxidation. Chem Biol Interact 1989;71:1–19.
- [28] Halliwell B, Gutteridge JMC. Formation of thiobarbituric acid-reactive substance from deoxyribose in the presence of iron salts: the role of superoxide and hydroxyl radicals. FEBS Lett 1981;128:347–52.
- [29] Yamazaki I, Piette LH. ESR spin-trapping studies on the reaction of Fe²⁺ ions with H₂O₂-reactive species in oxygen toxicity in biology. J Biol Chem 1990;265:13589–94.
- [30] Arduini A, Eddy L, Hochstein P. The reduction of ferryl myoglobin by ergothioneine: a novel function for ergothioneine. Arch Biochem Biophys 1990;281:41–3.
- [31] Sotomatsu A, Nakano M, Hirai S. Phospholipid peroxidation induced by catechol-Fe³⁺ (-Cu²⁺) complex, a possible mechanism of nigrostriatal cell damage. Arch Biochem Biophys 1990;282:334–41.
- [32] Rice-Evans C, Burdon R. Free radical-lipid interactions and their pathological consequences. Prog Lipid Res 1993;32:71–110.
- [33] Harvison PJ, Egan RW, Gale PH, Christian GD, Hill BS, Nelson SD. Acetaminophen and analogs as cosubstrates and inhibitors of prostaglandin H synthase. Chem Biol Interact 1988:64:251–66.
- [34] Miura T, Sakurai K, Ogiso T. Enhanced lipid peroxidation of erythrocyte membranes and phosphatidylcholine liposomes induced by a xanthine oxidase system in the presence of catalase. Chem Pharm Bull (Tokyo) 1984;32:3227–34.
- [35] Miller DM, Grover TA, Nayini N, Aust SD. Xanthine oxidase- and iron-dependent lipid peroxidation. Arch Biochem Biophys 1993;301:1–7.